144 research outputs found

    Surface shape resonances in lamellar metallic gratings

    Full text link
    The specular reflectivity of lamellar gratings of gold with grooves 0.5 microns wide separated by a distance of 3.5 microns was measured on the 2000 cm1^{-1} - 7000 cm1^{-1} spectral range for p-polarized light. For the first time, experimental evidence of the excitation of electromagnetic surface shape resonances for optical frequencies is given. In these resonances the electric field is highly localized inside the grooves and is almost zero in all other regions. For grooves of depth equal to 0.6 microns, we have analyzed one of these modes whose wavelength (3.3 microns) is much greater than the lateral dimension of the grooves.Comment: 4 pages (LaTex), 5 postscript figures, to be published in Physical Review Letter

    Use of specific Green's functions for solving direct problems involving a heterogeneous rigid frame porous medium slab solicited by acoustic waves

    Full text link
    A domain integral method employing a specific Green's function (i.e., incorporating some features of the global problem of wave propagation in an inhomogeneous medium) is developed for solving direct and inverse scattering problems relative to slab-like macroscopically inhomogeneous porous obstacles. It is shown how to numerically solve such problems, involving both spatially-varying density and compressibility, by means of an iterative scheme initialized with a Born approximation. A numerical solution is obtained for a canonical problem involving a two-layer slab.Comment: submitted to Math.Meth.Appl.Sc

    Modeling seismic wave propagation and amplification in 1D/2D/3D linear and nonlinear unbounded media

    Full text link
    To analyze seismic wave propagation in geological structures, it is possible to consider various numerical approaches: the finite difference method, the spectral element method, the boundary element method, the finite element method, the finite volume method, etc. All these methods have various advantages and drawbacks. The amplification of seismic waves in surface soil layers is mainly due to the velocity contrast between these layers and, possibly, to topographic effects around crests and hills. The influence of the geometry of alluvial basins on the amplification process is also know to be large. Nevertheless, strong heterogeneities and complex geometries are not easy to take into account with all numerical methods. 2D/3D models are needed in many situations and the efficiency/accuracy of the numerical methods in such cases is in question. Furthermore, the radiation conditions at infinity are not easy to handle with finite differences or finite/spectral elements whereas it is explicitely accounted in the Boundary Element Method. Various absorbing layer methods (e.g. F-PML, M-PML) were recently proposed to attenuate the spurious wave reflections especially in some difficult cases such as shallow numerical models or grazing incidences. Finally, strong earthquakes involve nonlinear effects in surficial soil layers. To model strong ground motion, it is thus necessary to consider the nonlinear dynamic behaviour of soils and simultaneously investigate seismic wave propagation in complex 2D/3D geological structures! Recent advances in numerical formulations and constitutive models in such complex situations are presented and discussed in this paper. A crucial issue is the availability of the field/laboratory data to feed and validate such models.Comment: of International Journal Geomechanics (2010) 1-1

    Genetic Variants in Hormone-Related Genes and Risk of Breast Cancer

    Get PDF
    Abstract Sex hormones play a key role in the development of breast cancer. Certain polymorphic variants (SNPs and repeat polymorphisms) in hormone-related genes are associated with sex hormone levels. However, the relationship observed between these genetic variants and breast cancer risk has been inconsistent. We conducted a case-control study nested within two prospective cohorts to assess the relationship between specific genetic variants in hormone-related genes and breast cancer risk. In total, 1164 cases and 2111 individually-matched controls were included in the study. We did not observe an association between potential functional genetic polymorphisms in the estrogen pathway, SHBG rs6259, ESR1 rs2234693, CYP19 rs10046 and rs4775936, and UGT1A1 rs8175347, or the progesterone pathway, PGR rs1042838, with the risk of breast cancer. Our results suggest that these genetic variants do not have a strong effect on breast cancer risk

    Molecular and morphometric variation in European populations of the articulate brachiopod <i>Terebeatulina retusa</i>

    Get PDF
    Molecular and morphometric variation within and between population samples of the articulate brachiopod &lt;i&gt;Terebratulina&lt;/i&gt; spp., collected in 1985-1987 from a Norwegian fjord, sea lochs and costal sites in western Scotland, the southern English Channel (Brittany) and the western Mediterranean, were measured by the analysis of variation in the lengths of mitochondrial DNA (mtDNA) fragments produced by digestion with nine restriction endonucleases and by multivariate statistical analysis of six selected morphometric parameters. Nucleotide difference within each population sample was high. Nucleotide difference between population samples from the Scottish sites, both those that are tidally contiguous and those that appear to be geographically isolated, were not significantly different from zero. Nucleotide differences between the populations samples from Norway, Brittany, Scotland and the western Mediterranean were also very low. Morphometric analysis confirmed the absence of substantial differentiation

    Hepatic transcriptional responses to copper in the three-spined stickleback are affected by their pollution exposure history

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Some fish populations inhabiting contaminated environments show evidence of increased chemical tolerance, however the mechanisms contributing to this tolerance, and whether this is heritable, are poorly understood. We investigated the responses of two populations of wild three-spined stickleback (Gasterosteus aculeatus) with different histories of contaminant exposure to an oestrogen and copper, two widespread aquatic pollutants. Male stickleback originating from two sites, the River Aire, with a history of complex pollution discharges, and Siblyback Lake, with a history of metal contamination, were depurated and then exposed to copper (46μg/L) and the synthetic oestrogen ethinyloestradiol (22ng/L). The hepatic transcriptomic response was compared between the two populations and to a reference population with no known history of exposure (Houghton Springs, Dorset). Gene responses included those typical for both copper and oestrogen, with no discernable difference in response to oestrogen between populations. There was, however, some difference in the magnitude of response to copper between populations. Siblyback fish showed an elevated baseline transcription of genes encoding metallothioneins and a lower level of metallothionein induction following copper exposure, compared to those from the River Aire. Similarly, a further experiment with an F1 generation of Siblyback fish bred in the laboratory found evidence for elevated transcription of genes encoding metallothioneins in unexposed fish, together with an altered transcriptional response to 125μg/L copper, compared with F1 fish originating from the clean reference population exposed to the same copper concentration. These data suggest that the stickleback from Siblyback Lake have a differential response to copper, which is inherited by the F1 generation in laboratory conditions, and for which the underlying mechanism may include an elevation of baseline transcription of genes encoding metallothioneins. The genetic and/or epigenetic mechanisms contributing to this inherited alteration of metallothionein transcription have yet to be established.This work was funded by the UK NERC postgenomic and proteomic programme grant NE/C507661/1 and by a Fisheries Society of the British Isles research grant to EMS. Birmingham functional genomics facilities were funded by BBSRC grant 6/JIF13209. We thank R.E. Godfrey, S. Jondhale, A. Jones, and L. Klovrza for technical assistance, J.K. Chipman for help and support, and the Environment Agency for provision of water chemistry data

    AHR2 Mutant Reveals Functional Diversity of Aryl Hydrocarbon Receptors in Zebrafish

    Get PDF
    The aryl hydrocarbon receptor (AHR) is well known for mediating the toxic effects of TCDD and has been a subject of intense research for over 30 years. Current investigations continue to uncover its endogenous and regulatory roles in a wide variety of cellular and molecular signaling processes. A zebrafish line with a mutation in ahr2 (ahr2hu3335), encoding the AHR paralogue responsible for mediating TCDD toxicity in zebrafish, was developed via Targeting Induced Local Lesions IN Genomes (TILLING) and predicted to express a non-functional AHR2 protein. We characterized AHR activity in the mutant line using TCDD and leflunomide as toxicological probes to investigate function, ligand binding and CYP1A induction patterns of paralogues AHR2, AHR1A and AHR1B. By evaluating TCDD-induced developmental toxicity, mRNA expression changes and CYP1A protein in the AHR2 mutant line, we determined that ahr2hu3335 zebrafish are functionally null. In silico modeling predicted differential binding of TCDD and leflunomide to the AHR paralogues. AHR1A is considered a non-functional pseudogene as it does not bind TCCD or mediate in vivo TCDD toxicity. Homology modeling, however, predicted a ligand binding conformation of AHR1A with leflunomide. AHR1A-dependent CYP1A immunohistochemical expression in the liver provided in vivo confirmation of the in silico docking studies. The ahr2hu3335 functional knockout line expands the experimental power of zebrafish to unravel the role of the AHR during development, as well as highlights potential activity of the other AHR paralogues in ligand-specific toxicological responses

    Directional genetic selection by pulp mill effluent on multiple natural populations of three-spined stickleback (Gasterosteus aculeatus)

    Get PDF
    Contamination can cause a rapid environmental change which may require populations to respond with evolutionary changes. To evaluate the effects of pulp mill effluents on population genetics, we sampled three-spined sticklebacks (Gasterosteus aculeatus) near four pulp mills and four adjacent reference sites and analyzed Amplified Fragment Length Polymorphism (AFLP) to compare genetic variability. A fine scale genetic structure was detected and samples from polluted sites separated from reference sites in multidimensional scaling plots (P < 0.005, 1000 permutations) and locus-by-locus Analysis of Molecular Variance (AMOVA) further confirmed that habitats are significantly separated (FST = 0.021, P < 0.01, 1023 permutations). The amount of genetic variation between populations did not differ between habitats, and populations from both habitats had similar levels of heterozygosity (polluted sites Nei’s Hs = 0.11, reference sites Nei’s Hs = 0.11). Still, pairwise FST: s between three, out of four, pairs of polluted-reference sites were significant. A FST-outlier analysis showed that 21 (8.4%) loci were statistically different from a neutral distribution at the P < 0.05 level and therefore indicated to be under divergent selection. When removing 13 FST-outlier loci, significant at the P < 0.01 level, differentiation between habitats disappeared in a multidimensional scaling plot. In conclusion, pulp mill effluence has acted as a selective agent on natural populations of G. aculeatus, causing a convergence in genotype composition change at multiple sites in an open environment
    corecore